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We consider the antiphase synchronization in symmetrically coupled self-oscillators. As model,
two Chua’s circuits coupled via a capacity are used. Linear analysis in the vicinity of the sym-
metric subspace gives the stability conditions for antiphase oscillations. Numerical oscillations
demonstrate controlled antiphase synchronization at different values of the parameters of the
system.

1. Introduction

Since the beginning of the 90s a new direction ap-
peared in the theory of dynamical systems, which
was called “Controlling chaos”. The subject of this
field is how to transform chaotic behavior to a reg-
ular one or to a more simple chaotic one by means
of special small influence on the dynamical system.
Pioneer works of this new direction were papers by
Hubler and Lucher [1989], Jackson [1990] and the
well-known paper by Ott, Grebogi and Yorke [1990].
Now there is a lot of different algorithms of chaos
control, which are applied to tasks of hydrodynam-
ics [Singer et al., 1991], mechanics [In & Ditto, 1995;
Baretto & Grebogi, 1995], chemistry [Petrov et al.,
1993], biology and medicine [Garfinkel et al., 1992;
Schiff et al., 1994].

Methods of control of chaos can be applied for
synchronization of coupled chaotic oscillators. In
scientific literature there is no common view for
the problem of chaotic synchronization. Different
types of chaotic synchronization are “complete syn-
chronization”, when oscillations of subsystems are
equal or nearly equal to each other [Fujisaka &
Yamada, 1983; Afraimovich et al., 1986];
“generalized synchronization”, when there is a func-
tional dependence between states of the subsystems
[Rulkov et al., 1995]; “frequency synchronization”
which means locking of peaks in the spectra of

oscillations [Anishchenko et al., 1991, 1992];
“phase synchronization” when phases of oscillations
are locked while amplitudes remain uncorrelated
[Rosenblum et al., 1996]. The majority of works
on controlled synchronization of chaos consider the
case of complete in-phase synchronization [Lai &
Grebogi, 1993; Malescio, 1996]. Another interesting
case of chaotic synchronization, which can be real-
ized by chaos control is antiphase chaotic synchro-
nization, when states of the subsystems satisfy the
condition x1 = −x2. The antiphase synchroniza-
tion of chaos on the example of a two-dimensional
map and a six-dimensional flaw was considered in
the work [Cao & Lai, 1998]. Following Pecora
and Carroll [1990] they used the so-called “master–
slave” approach to the task of the antiphase syn-
chronization. In our work we consider antiphase
synchronization in symmetrically coupled identical
self-oscillators with additional controlling feedback
loop.

Let us consider the task of antiphase synchro-
nization in symmetrically coupled oscillators. Let
the equation of the system be in the form:

ẋ1 = f(x1) + γ(x1, x2)

ẋ2 = f(x2) + γ(x2,x1)
(1)

γ(x1, x2) = −γ(x2, x1) ,
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x1,2 ∈ RN are vectors of dynamical variables,

f ∈ RN — vector function which determines the
right side of the equation of the single oscillator,

γ ∈ RN — vector function, which determines the
symmetric coupling between oscillators.

The possibility of the antiphase synchroniza-
tion in the system (1) is determined by two fac-
tors. Firstly, this is an existence of the symmet-
ric subspace x1 = −x2 in the phase space of the
system, secondly, this is stability of antiphase mo-
tions to small perturbations in the normal direc-
tion to the subspace. The first condition is realized
when Eq. (1) is invariant to the transformation of
variables:

x1 ↔ −x2 . (2)

Substituting (2) into (1) we get the conditions for
the functions f(x) and γ(x1, x2):

f(−x) = −f(x)

γ(−x1, −x2) = −γ(x1, x2)
(3)

To determine the stability conditions for an-
tiphase oscillations it is convenient to use a trans-
formation of variables:

u =
x1 + x2

2
,

v =
x1 − x2

2

(4)

in the vicinity of the symmetric subspace x1 = −x2.
The equations in new variables near the subspace
can be written in the form:

u̇ = f ′(v)u (5)

v̇ = f(v) + γ(v, −v) . (6)

Equation (6) describes the dynamics of the sys-
tem inside the symmetric subspace. It determines
the equation of the equivalent single oscillator. Un-
like the case of the in-phase synchronization the pa-
rameters of the equivalent oscillator depend on the
coupling vector γ.

Equation (5) describes the dynamics of the sys-
tem (1), (3) in the vicinity of the symmetric sub-
space in the direction normal to it. A zero solution
of (5) u = 0 corresponds to antiphase motions in
the original system. Stability of this solution means
stability of the synchronous oscillations.

For controlling the stability of the antiphase
motions, let us add a feedback term to the right
side of Eq. (1):

ẋ1 = f(x1) + γ(x1, x2) + Φ1(x1, x2)

ẋ2 = f(x2) + γ(x2, x1) + Φ2(x1, x2) .
(7)

The controlling influence will not induce new
antiphase oscillating regimes in the system, but will
only change the stability of the old ones, if the con-
trolling function [Φ1 Φ2]

T is equal to zero on the
symmetric subspace and is not equal to zero on the
subspace normal to it. This leads to the condition:

Φ1,2(x, −x) = 0 , Φ1,2(x, x) 6= 0 . (8)

It is convenient to choose the controlling function
in linear form on both arguments:

Φ1,2 = [r1,2](x1 + x2) , (9)

[r1,2] ∈ RN ×RN .

For new variables u and v the equations with con-
trol are the following:

u̇ = [f ′(v) + [r1] + [r2]]u (10)

v̇ = f(v) + γ(v, −v) + ([r1]− [r2])u (11)

Unknown matrixes [r1] and [r2] are determined from
linear analysis of the stability of the fixed point
u = 0 of Eq. (10).

2. The System Under Consideration

As an object for investigations we used the system
of two coupled via a capacity identical Chua’s os-
cillators. The scheme of the circuit is presented in
Fig. 1(a), and the characteristic of the nonlinear
element is in Fig. 1(b). The dynamics of the sin-
gle Chua’s generator is well described in scientific
literature (see e.g. [Komuro et al., 1991]). It demon-
strates transition from order to chaos via a cascade
of subharmonic bifurcations and then the uniting
of chaotic attractors symmetric to each other by
forming the so-called “double-scroll” attractor. The
equation of the coupled oscillators in dimensionless
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(a)

(b)

Fig. 1. (a) The scheme of the two coupled via a capacity
Chua’s oscillators and (b) the volt–ampere characteristic of
the nonlinear element.

form can be written as follows:

ẋ1 = α(y1 − x1 − f(x1))

ẏ1 = x1 − y1 + z1 + γ((x2 − x1)

− (y2 − y1) + (z2 − z1))

ż1 = −βy1

ẋ2 = α(y2 − x2 − f(x2))

ẏ2 = x2 − y2 + z2 + γ((x1 − x2)

− (y1 − y2) + (z1 − z2))

ż2 = −βy2 ,

(12)

f(x) =


bx+ a− b if x ≥ 1

ax if |x| < 1

bx− a+ b if x ≤ −1

where α = C2/C1, β = C2/(LG
2), γ = Cc/(C2 +

2Cc), a = m1/G, b = m0/G, τ = tG/C2. The pa-
rameters α and γ were chosen as the varied ones,
the parameters β, a, b were fixed to values: β = 22,
a = −8/7, b = −5/7.

The system (12) has nine equilibria:

{P1, P1} , {P1, P0} , {P1, P2} ,
{P0, P1} , {P0, P0} , {P0, P2} ,
{P2, P1} , {P2, P0} , {P2, P2} ,

where P1 = (1.5, 0, −1.5), P0 = (0, 0, 0) and P2 =
(−1.5, 0, 1.5) are equilibria of the single Chua’s
oscillator.

The system (12) has two basic kinds of sym-
metry: R : x1 ↔ x2, y1 ↔ y2, z1 ↔ z2 and
I : x1,2 ↔ −x1,2, y1,2 ↔ −y1,2, z1,2 ↔ −z1,2. Be-
cause transformations R and I are commutative of
each other: I ◦R = R ◦ I, their combination is also
the symmetry for the system (12): I◦R : x1 ↔ −x2,
y1 ↔ −y2, z1 ↔ −z2. The symmetry of the system
to the transformation R is a necessary condition for
the in-phase synchronization. The symmetry to the
transformation I ◦R is a necessary condition for the
antiphase synchronization.

The dynamics of the system (12) is described
in [Astakhov et al., 1997a]. It demonstrates tran-
sition to chaos through both period-doubling bi-
furcations and tori breaking. The system is char-
acterized by multistability when several attractors
coexist in the phase space. As in the cases
of other symmetrically coupled oscillators with
period-doublings (see e.g. [Astakhov et al., 1989;
Anishchenko et al., 1995]) the origin of the multi-
stability in the system is the bifurcational mech-
anisms, when every cycle in the cascade of the
period-doubling undergoes this bifurcation twice.
The first period-doubling occurs with the stable cy-
cle, as a result the cycle loses its stability and in its
neighborhood a stable cycle of double period ap-
pears. The second period-doubling occurs with the
saddle cycle, as a result the cycle gets another di-
rection of instability and in its neighborhood a sad-
dle cycle of double period appears. This scenario
leads to the increasing of a number of cycles with
equal periods. There are two cycles with period-
two, four with period-four, eight with period-eight,
etc. Cycles with equal periods have different time-
delays between oscillations of the subsystems. The
value of the delays are proportional to the period
of the original period-one cycle. On bases of these
cycles different families of multiband chaotic attrac-
tors are formed. For further parameter changes, in
the chaotic region there are bound-merging bifurca-
tions which are accompanied by uniting attractors
of different families. The scheme of development for
multistability in the system is presented in Fig. 2.
There the letter denotes the type of the limit set:
C is a cycle, T is a two-dimensional torus, A is a
chaotic set; the first index is a number of connected
regions on the Poincare section, the upper one is
a time-delay between oscillations of the subsystems
per the period of the original period-one cycle (for
periodic oscillations).
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Fig. 2. The diagram of the appearance of different oscillating regimes in the system of coupled oscillators.

3. Control of Antiphase
Synchronization in the System

In-phase and antiphase chaotic oscillations does not
take place in the system (12) without control influ-
ence. To realize a regime of antiphase synchroniza-
tion we add a term of the feedback loop r(x1 + x2)
to the equation of the system:

ẋ1 = α(y1 − x1 − f(x1)) + r(x1 + x2) (13)

ẏ1 = x1 − y1 + z1 + γ((x2 − x1)

− (y2 − y1) + (z2 − z1)) (14)

ż1 = −βy1 (15)

ẋ2 = α(y2 − x2 − f(x2)) (16)

ẏ2 = x2 − y2 + z2 + γ((x1 − x2)

− (y1 − y2) + (z1 − z2)) (17)

ż2 = −βy2 . (18)

Let us choose new variables in the form:

u =
x1 + x2

2
, u′ =

x1 − x2

2

v =
y1 + y2

2
, v′ =

y1 − y2

2

w =
z1 + z2

2
, w′ =

z1 − z2

2
.

We add and subtract Eqs. (13) and (16), (14) and

(17), (15) and (18) respectively:

u̇ = α(v − u− 0.5(f(x1) + f(x2)) + ru

v̇ = u− v + w

ẇ = −βv
u̇′ = α(v′ − u′ − 0.5(f(x1)− f(x2)) + ru

v̇′ = (1− 2γ)(u′ − v′ + w′)

ẇ′ = −βv′

(19)

If the phase point locates near the symmetric sub-
space x1 = −x2 the following conditions will be
fulfilled:

x1 > 1 and x2 < −1

x1 < −1 and x2 > 1 ,

or

|x1| < 1 and |x2| < 1 .

Therefore equations of the oscillators with control
in new variables have the form:

u̇ = α(v − u− h(u′)u) + ru (20)

v̇ = u− v + w (21)

ẇ = −βv (22)

u̇′ = α(v′ − u′ − f(u′)) + ru (23)

v̇′ = (1− 2γ)(u′ − v′ + w′) (24)

ẇ′ = −βv′ , (25)
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where

h(u′) =

{
b, if |u′| > 1

a, if |u′| < 1,

Equations (23)–(25) describe the dynamics of
the system inside the symmetric subspace. With-
out control, if r = 0 they can be written in the
form:

1

1− 2γ
u̇′ = α′(v′ − u′ − f(u′))

1

1− 2γ
v̇′ = u′ − v′ + w′ (26)

1

1− 2γ
ẇ′ = −β′v′ ,

where

α′ =
α

1− 2γ
, β′ =

β

1− 2γ
.

Or,

du′

dτ ′
= α′(v′ − u′ − f(u′))

dv′

dτ ′
= u′ − v′ + w′ (27)

dw′

dτ ′
= −β′v′ ,

here τ ′ = (1− 2γ)τ is “slow” time.
It is seen that the form of oscillations in the

symmetric subspace is the same as in the single os-
cillator with other parameters α and β:

α→ α

1− 2γ

β → β

1− 2γ
,

and all time scales are changed (1− 2γ) times.
The stability of antiphase oscillations is deter-

mined by the stability of the fixed point (u = 0,
v = 0, w = 0) [Eqs. (20)–(22)]. Antiphase oscilla-
tions will be surely stable if this point is stable at
any point (u′, v′, w′) on the attractor. To deter-
mine the values of the coefficient r that give suf-
ficient condition for stabilization of the antiphase
motions we hold linear analysis of the fixed point.
The Jacobi matrix for the system is:

[J ] =

−αc+ r α 0

−1 −1 1

0 −β 0



where

c =

{
1 + b if |u′| > 1

1 + a if |u′| < 1

The characteristic equation for the matrix eigenval-
ues has the form:

λ3 + λ2[αc − r + 1] + λ[αc− r + β − α]

+ β(αc − r) = 0 (28)

Using the Rauth–Gurvitz criterion gives the follow-
ing condition for the coefficient r:

r < αc− α− 1

2
−
√

(α− 1)2 − 4(β − α)

2
. (29)

For evaluating r we choose the minimal possible
value of c:

c = min(1 + a, 1 + b) = 1 + a .

The region of correspondent values of r is located
under the line in Fig. 3. This condition is suffi-
cient for antiphase synchronization. It leads local
attracting trajectories to the symmetric subspace at
any of its points. This is a stronger condition than
that really needed for synchronization, but this can
ensures it.

9.0 10.0 11.0 12.0
α

−15.0

−13.0

−11.0

−9.0

−7.0

−5.0

−3.0

−1.0

r

Fig. 3. The region on the parameters plane (α − r) where
antiphase oscillations are stable. The solid line is obtained
from the linear analysis, points are obtained from computer
experiments: (◦) at γ = 0.05, (2) at γ = 0.1 and (*) at
γ = 0.15.
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4. Experimental Investigations of
Controlled Antiphase
Synchronization

At determined parameter values in the system
(12) there is double–double scroll chaotic attractor
[Figs. 4(a) and 4(b)] which includes saddle sets lo-
cated in the symmetric subspace x1 = −x2. Be-
cause the chaotic trajectory visits every point of
the attractor, it enters a small neighborhood of the
symmetric subspace. The measure of the nearness
of the current phase point to the subspace can be
chosen in the form:

ρ =
√

(x1 + x2)2 + (y1 + y2)2 + (z1 + z2)2 .

Let us choose a small value ε > 0 as a criterion for
the nearness of the phase point to the symmetric
subspace.

For numeric experiments of the investigation of
controlled antiphase synchronization we used the
following algorithm. For the current value α we
found the value of the parameter r which satisfies
the condition (29). The system (13)–(18) begins to
oscillate from any initial conditions in the basins
of the chaotic attractor which includes saddle an-
tiphase motions. During oscillations we continu-
ously seek for the value ρ which is compared with
the chosen value ε. While ρ > ε the controlling in-
fluence is switched off and r = 0. When the phase
point appears in the ε-neighborhood of the symmet-
ric subspace, the controlling influence begins op-
erating. The antiphase motions become stable to
transverse to the symmetric subspace perturbations
and the trajectory is attracted to the subspace. The
system transits to the regime of antiphase synchro-
nization and stays there while the control influence
is switched on. In Fig. 4 there is an example of
the controlled transition from the double–double
scroll regime to antiphase chaotic oscillations.
Figures 4(a) and 4(b) present projections of the
phase portrait of the chaotic attractor in the system
without control. Figures 4(c) and 4(d) demonstrate
the process of the controlled transition from the
nonsynchronous oscillations to synchronous ones.
In Fig. 4(d) there is dependence of the controlling
term F = r(x1 + x2) on time t. It is seen that the
control influence becomes very small when the aim
of the control is achieved. In Figs. 4(e) and 4(f)
there are projections of the phase portraits of the
resulting synchronous chaotic attractor.

We determined the dependence of the minimal
value of the parameter r on α at different values γ
which allow the synchronization of the oscillators.
Initial conditions were chosen near the symmetric
subspace. The results are presented in Fig. 3. Re-
gions of stable antiphase oscillations are located un-
der the boundaries which are marked by symbols
(◦) for γ = 0.05, (2) for γ = 0.01 and (*) for
γ = 0.15. It is seen that the boundary does not
practically depend on the coupling coefficient and
its form is very similar to the theoretical curve (the
solid line), though the experimental boundaries are
located over the curve.

In our computer experiments we also consid-
ered the question how the system exits the regime
of antiphase synchronization on reducing the ab-
solute value of the controlling parameter r. We
chose the parameters values: α = 10.4 and γ = 0.2
that correspond to the one-band chaotic attractor
located in the symmetric subspace and added noise
of small intensity to the system. In these experi-
ments we did not switch off control influence when
the trajectory leaves the neighborhood of the sub-
space. In Fig. 5 there are consequence changing
of the phase portrait projections and the time se-
ries x1(t)+x2(t) at the parameter r increasing from
r = −6.43 till r = −6.36. At r = −6.43 [Fig. 5(a)]
oscillations are antiphase. At r ∼ −6.406 [Fig. 5(b)]
a short burst of small values appear, but oscilla-
tions remain nearly antiphase. On further increas-
ing r these bursts appear more often. Then, at
r = −6.395 we see intermittency process between
the mentioned nearly synchronous oscillations and
bursts of large “amplitude”. These bursts have
duration of ∼104 and are interrupted by intervals
of near synchronous oscillations [Fig. 5(c)]. The
chaotic attractor changes its structure. The chaotic
trajectory begins to visit neighborhoods of both
equilibria {P1, P2} and {P2, P1}. The projection
of the phase portrait becomes more “thick” and os-
cillations become partially synchronous. On further
increase of r the “bursts” appear more often, their
“amplitude” and duration increase. Oscillations be-
come less and less synchronous [Fig. 5(d)]. Then,
at r ∼ −6.35 the chaotic set becomes unattractive
and the trajectory leaves to infinity.

Considering the above phenomena these remain
questions about bifurcational mechanisms which
lead to antiphase synchronization loss. Are these
mechanisms similar to the mechanisms of the in-
phase synchronization loss [Astakhov et al., 1997b]?
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Fig. 4. (a and b) Projections of phase portraits and time series of oscillations without control of chaos, (c and d) transition
process to antiphase oscillations and (e and f) resulting oscillations using chaos control.
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Fig. 5. Projections of phase portraits and time series of oscillations at consequent reduction of the absolute value of the
controlling parameter r.
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Do periodic cycles which form the “skeleton” of
the attractor play important role in these mecha-
nisms? The solution to this problem needs further
investigations.

5. Conclusion

In this work, we considered the possibility of con-
trolled antiphase synchronization in the system of
two symmetrically coupled Chua’s oscillators by
means of additional feedback loop. By the linear
analysis of the stability of antiphase oscillations to
transversal perturbations we found sufficient condi-
tions for the stability of antiphase regimes. We also
showed that the system of two coupled oscillators in
this regime behaves as the single Chua’s oscillator
with transformed parameters and with “slow” time.
Numeric experiments confirmed that antiphase os-
cillations are stabilized in the chosen region of the
controlling parameter.
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